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X-ray imaging techniques are increasingly used in 

modern SR facilities [1], and constitute, for instance, one 
of the five priority topics retained for the Upgrade 
Program of the ESRF [2]. The common feature to all 
these techniques is that they apply to inhomogeneous 
samples, where it is important to measure “locally” a 
given property, which can be, for instance, the density, 
the composition, the chemical state or the distortion. 
These techniques take advantage of most of the photon-
matter interactions: absorption, wavefront modification, 
diffraction, scattering, photoemission, … An increasing 
part of the experimental results obtained at modern SR-
facilities can now be considered, in this way, as “X-ray 
images” i.e. maps in two, or, increasingly, in three 
dimensions, over the sample of the “local” value of a 
physical quantity. In this case “local” does not mean 
atomic level (whereas in some cases atomic information 
can be extracted from the images) but corresponds to the 
very important 10

-3
-10

-8
 m range, where many biological 

and materials science phenomena occur. 

The availability of very efficient lenses in the hard 
X-ray range (2-100 keV) [3-6] led to a dramatic progress 

of the scanning version of X-ray imaging (microbeam 

based imaging). This is used for structural and 
chemically–selective X-ray imaging (high spatial  
 
 
 

resolution fluorescence maps, or chemical state using 
energy dispersive micro-spectroscopy) [7, 8]. 

Techniques are clearly heading towards fulfilling the 

nanoscale challenge, this implying higher spatial 

resolution X-ray imaging. This is a clear requirement 
originating from many different scientific communities, 
which include materials science, but also soft condensed 
matter, biology, and cultural heritage. High spatial 
resolution, beyond the detector resolution, is being 
achieved by nanofocused beams or by lensless coherent 
diffraction imaging, with a generalized use of phase 
retrieval procedures, like the iterative determination of 
the phase of the scattering amplitude in coherent 
diffraction imaging [9-14].  

A second obvious trend is the improvement of temp-

oral resolution, made possible by the specific develop-
ment of X-ray detectors and computing upgrades, which 
offer new scientific opportunities to follow a system 
evolving with a short time constant (ms-s range) [15, 16]. 

Recent developments exploit the coherence of the 
synchrotron X-ray beams for sophisticated phase contrast 
imaging or coherent diffraction imaging. These 
techniques rely on improvements of detectors and 
algorithms, in particular for the reconstruction of 
“holotomographic” images [17, 18]. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 

Figure 1: information accessible by using X-ray imaging, and some corresponding SR-based techniques. 
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 The combination of techniques can substantially 
improve the scientific information that can be obtained 
on a given topic [19]. An example is Diffraction Contrast 
Tomography, which provides both the shape and 
orientation of the grains in a polycrystalline, and the 
fracture path when this sample is submitted to a tensile 
stress [20, 21].  

These new opportunities will be discussed and 
illustrated by examples of applications to a wide variety 
of materials, which reveal features not observable 
otherwise. 
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