P10 **EFFECT OF ANNEALING ON THE STRUCTURAL PROPERTIES OF Si:Mn**

<u>P. Romanowski</u>^{1*}, J. Bak-Misiuk¹, E. Dynowska¹, A. Misiuk², J.Z. Domagala¹, and W. Caliebe³

¹ Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, PL-02668 Warsaw, Poland ² Institute of Electron Technology, Al. Lotnikow 46, PL-02668 Warsaw, Poland ³ HASYLAB at DESY, Notkestr. 85, D-22603 Hamburg, Germany

Keywords: silicon, manganese, implantation, X-ray, diffraction, synchrotron, structure

*) e-mail: przemyslaw.romanowski@ifpan.edu.pl

Ferromagnetic ordering in silicon implanted with Mn⁺ ions (Si:Mn) has been reported recently. This ordering is related to the structure of Mn-enriched near-surface layer of the implanted and subsequently processed material [1, 2].

The aim of this work was to investigate an influence of Mn-implantation dose, D, substrate temperature during implantation, T_s , and post-implantation temperature of annealing, Ta, on the structure of Si:Mn exhibiting magnetic properties [2, 3], prepared from Si with various interstitial oxygen concentrations, c_o .

Single crystalline Czochralski-silicon wafers were implanted with 160 keV Mn⁺ ions to doses, $D = 2 \times 10^{15}$, 1×10^{16} or 1.2×10^{16} cm⁻², $T_s = 340$ or 610 K. Projected range (R_p) of Mn⁺ was equal to 140 ± 50 nm. The c_o value, in Cz-Si was up to 9×10¹⁷ cm⁻³. Si:Mn was processed after implantation for 1 h at T_a up to 1270 K under ambient pressure (10^5 Pa) .

Structural characterization of the near-surface polycrystalline layers was performed using synchrotron radiation at the W1.1 beamline at DESY-HASYLAB (Hamburg). The monochromatic X-ray beam of wavelength $\lambda = 1.54056$ Å was used. The phase analysis of the near-surface layers was performed using coplanar 2θ scans in the grazing incidence geometry.

The structure of Si:Mn samples was also investigated by X-ray diffractometry in the double and triple axis configurations using high-resolution Phillips-MRD diffractometer. Reciprocal space maps (RSMs) for the 004 reflections were registered.

For Cz-Si:Mn prepared at $T_s = 340$ K, with D = 2×10^{15} cm⁻² or 1×10^{16} cm⁻², the implanted layer remains

(3)

(2)

(a)

60

log [intensity]

to be amorphous both after implantation and after annealing at $T_a = 610$ K (Fig. 1a). The reflections originating from polycrystalline Si were detected in the case of $D = 1 \times 10^{16}$ cm⁻² and $T_s = 340$ K after the treatment at $T_a = 1270$ K. It shows on re-crystallization of nano-crystalline layer (Fig. 1b). Simultaneously the diffraction peaks of small intensity, corresponding to the Mn₄Si₇ phase, were detected.

The defect structure of Si:Mn depends first of all on T_s during implantation, on oxygen concentration, $c_{0,2}$ on Mn^+ dose, *D*, as well as on the annealing conditions.

Acknowledgements: This work was partially supported by the European Community - Research Infrastructure Action under FP6 "Structuring the European Research Area" Programme (through the Integrated Infrastructure Initiative "Integrating Activity on Synchrotron and Free Electron Laser Science", Contract RII3-CT-2004-506008).

References

- [1] M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M.B. Huang, F.G. Ramos, G. Agnello, V.P. LaBella, "Above room temperature ferromagnetism in Mn-ion implanted Si", Phys. Rev. B 71 (2005) 033302.
- [2] A. Misiuk, J. Bak-Misiuk, B. Surma, W. Osinniy, M. Szot, T. Story, J. Jagielski, "Structure and magnetic properties of Si:Mn annealed under enhanced hydrostatic pressure", J. Alloys Compds. 423 (2006) 201-204.
- [3] Shengqiang Zhou, K. Potzger, Gufei Zhang, A. Muecklich, F. Eichhorn, N. Schell, R. Groetzschel, B. Schmidt, W. Skorupa, M. Helm, J. Fassbender, D. Geiger, "Structural and magnetic properties of Mn-implanted Si", Phys. Rev. B 75 (2007) 085203.

Figure 1. Coplanar 2θ scans in grazing incidence geometry for Cz-Si:Mn implanted with different conditions and annealed at $T_a =$ 610 K (a) and $T_a = 1270$ K (b) for 1 h under ambient pressure: $T_s = 340$ K, $D = 2 \times 10^{15}$ cm⁻² ² (1); $T_s = 340$ K, $D = 1 \times 10^{16}$ cm⁻² (2); $T_s = 610$ K, $D = 1 \times 10^{16}$ cm⁻² (3).

(b)

(3)

(1)