## EFFECT OF γ-RAYS ON THE STRUCTURE AND ELECTRICAL PROPERTIES OF ZnO/TiO<sub>2</sub> CERAMICS

Suzan Abd El All<sup>\*1</sup> and Gamil Ali El-Shobaky<sup>2</sup>

<sup>1</sup> Radiation Physics Department, National Center for Radiation Research and Technology(NCRRT), NasrCity, 002 Cairo, Egypt

<sup>2</sup> Department of Physical Chemistry, National Research Center, Dokki, 002 Cairo

Keywords: Ceramics, Irradiation, ZnO, TiO<sub>2</sub>

\*) e-mail: t suzy a m@yahoo.com

A number of recent studies concern the phase diagram and characterization of the  $ZnO-TiO_2$  system. This system attracts the attention of researchers because of its importance in practical applications [1-5].

ZnO/TiO<sub>2</sub> powders were synthesized by sol-gel method using zinc chloride and titanium chloride in molar ratio of 1:1as reactants. Ammonium hydroxide was used to precipitate Zn<sup>2+</sup> and Ti<sup>2+</sup> cations as hydroxides simultaneously. The hydroxide precursor powder was calcined at various temperatures ranging from 500-1000°C for constant time of 6 h. The as-prepared material was irradiated using  $\gamma$ -rays <sup>60</sup>Co at different doses. The phase content and lattice parameters and effect of radiation were studied by the powder X-ray diffraction. The particle size and morphology were studied by SEM.

The characteristics of the  $ZnO/TiO_2$  samples were found to depend on the calcination temperature and irradiation dose. Heating at 500°C led to a mixture of Ti<sub>3</sub>O<sub>5</sub> (monoclinic), ZnTiO<sub>3</sub> (rhombohedral) with addition of a few extra lines of other oxides as secondary phases. With increasing the temperature to 1000°C we observe the changes of the phase composition during the process manifested by changes in X-ray diffraction pattern from the mixture.

The  $\gamma$ -irradiation is found to significantly influence the structure of the irradiated solid. The system shows a decrease in the crystallite size from 130 nm to 63 nm for sample irradiated. Moreover, this treatment resulted in a significant increase in the electrical conductivity  $(10^2 - 10^3 - \text{fold})$  of the material.

Acknowledgements: The authors wish to thank Prof. Wojciech Paszkowicz for discussion of the diffraction results.

## References

- O. Yamaguchi, M. Morimi, H. Kawabata, K. Shimizu, "Formation and transformation of ZnTiO<sub>3</sub>", *J. Am. Ceram. Soc.* **70** (1987) C97.
- [2] S.F. Wang, F. Gu, M.K Lü, C.F. Song, S.W. Liu, D.. Xu, D.R. Yuan, "Preparation and characterization of sol-gel derived ZnTiO<sub>3</sub> nanocrystals", *Mater. Res. Bull.* 38 (2003) 1283-1288.
- [3] Y.-S. Chang, Y.-H. Chang, I.-G. Chen, G.-J. Chen, Y.-L. Chai, S. Wu, T.-H. Fang, The structure and properties of zinc titanate doped with strontium. *J. Alloys Compds.* 354 (2003) 303-309.
- [4] S-L Yang, J.M. Wu, "Cooling rate effects on the electrical properties of TiO<sub>2</sub>-based varistors", J. Am. Ceram. Soc. 76 (1995) 2203-2208.
- [5- Y.-S. Chang, Y.-H. Chang, I.-G. Chen, G.-J. Chen, "Synthesis and characterization of zinc titanate doped with magnesium", *Solid State Commun.* 128 (2003) 203-208.