P8

PHASE AND STRUCTURAL BEHAVIOUR OF THE PrAIO₃-LaAIO₃ PSEUDO-BINARY SYSTEM

T.V. Basyuk^{1*}, <u>T. Tataryn</u>¹, L.O. Vasylechko¹, S. Fadyeev¹, I.I. Syvorotka², D. Trots³, and R. Niewa⁴

¹ Lviv Polytechnic National University, Semiconductor Electronics Department, 12 Bandera Str., 79013 Lviv, Ukraine ² SRC "Carat", 202 Stryjska Str., 79031 Lviv, Ukraine

³ Darmstadt University of Technology, Institute for Materials Science, Petersenstraße 23, 64287 Darmstadt, Germany ⁴ Technische Universität München, Department Chemie, Lichtenbergstraße 4, 85747 Garching b. München, Germany

Keywords: rare-earth aluminate, perovskite, phase diagram, phase transition

At room temperature, rare earth aluminates RAIO₃ were found to crystallize in rhombohedral $R\bar{3}c$ (R = La, Pr, Nd), orthorhombic *Pbmn* (R = Sm-Lu, Y) and tetragonal I4/mcm (CeAlO₃) structures. In general, two types of phase transformations are known for RAIO₃ perovskites. A continuous phase transition $Pm\bar{3}m-R3c$ is typical for RAIO₃ compounds containing "light" rareearth metals (R = La, Ce, Pr, Nd), whereas a first-order phase transformation $R\bar{3}c$ -Pbnm is inherent for SmAlO₃, GdAlO₃ and EuAlO₃. The respective praseodymium aluminate shows an exceptional behaviour among the RAIO₃ compounds. Besides a high-temperature (HT) phase transition from rhombohedral to cubic perovskite structure, PrAlO₃ undergoes a sequence of lowtemperature (LT) phase transformations, which is a solely exception among all AMO₃ compounds with perovskite structures [1]. A similar complex behaviour of the phase transformations has been observed for CeAlO3-based perovskites [2].

In order to study the phase and structural behaviour in the PrAlO₃–*R*AlO₃ (R = La) pseudo-binary systems a series of Pr_{1-x} R_x AlO₃ samples (x = 0.1-0.9) was prepared by a combination of solid state reaction and arc melting in Ar atmosphere. Phase analyses of the samples were performed by X-ray powder diffraction. *In situ* LT and HT structural investigations have been performed by using a high-resolution powder diffraction technique applying synchrotron at beamline B2 of the synchrotron laboratory HASYLAB at DESY.

It was established, that a continuous solid solution $Pr_{1-x}La_xAIO_3$ with rhombohedral perovskite structure exists at ambient temperature. Lattice parameters and cell volumes increase monotonically with increasing La content.

At elevated temperatures, the solid solutions $Pr_{1-x}La_xAlO_3$ undergo continuous phase transitions from rhombohedral to cubic structures. Structural transformations $R\bar{3}c$ -Imma and Imma-C2/m were observed in the majority of specimens below room temperature. The temperatures of both HT and LT phase transitions decrease with decreasing Pr content in $Pr_{1-x}La_xAlO_3$, but these transformations are different in nature. The HT transition is induced by a structural deformation and its temperature decreases with increasing R-cation radius and tolerance factor. The low temperature

transitions in this system are caused by electronic effects and the temperatures decrease with decreasing Pr content. Structural parameters of all five modifications of the perovskite structure found for $Pr_{1-x}La_xAIO_3$ at different compositions and temperatures are refined.

Based on the results of *in situ* synchrotron powder diffraction examinations, DTA/DSC measurements and available literature data, the phase diagram of the PrAlO₃–LaAlO₃ pseudo-binary system has been constructed (Fig. 1).

Figure 1. Phase diagram of the PrAlO₃–*R*AlO₃ pseudo-binary system. The symbols L, C, Rh, O, M and T indicate liquid, cubic, rhombohedral, orthorhombic, monoclinic and (pseudo)-tetragonal phase fields, respectively.

Acknowledgements: The work was supported in part by the Ukrainian Ministry of Education and Sciences (Project "Segnet") and ICDD Grant-in-Aid program. T. Basyuk gratefully acknowledges support from DAAD (*Leonhard–Euler program*). T. Tataryn thanks the Panalytical B.V. for the financial support permitting for participation in ISSRNS'2008.

References

- M.A. Carpenter, C.J. Howard, B.J. Kennedy, K.S. Knight, "Strain mechanism of order-parameter coupling through successive phase transitions in PrAlO₃", *Phys. Rev. B* 72 (2005) 024118.
- [2] L.O. Vasylechko, A. Senyshyn, D. Trots, R. Niewa, W. Schnelle, M. Knapp, "CeAlO₃ and Ce_{1-x}R_xAlO₃ (*R*=La, Nd) solid solution: Crystal structure, thermal expansion and phase transition", *J. Solid State Chem.* **180** (2007) 1277-1290.