P-32

SXMCD study of magnetic adatoms on Bi$_2$Se$_3$ and Bi$_2$Te$_3$ single crystals

M. Waśniowska1, M. Dobrzański2, M. Sikora*,2
T. Eelbo1, I. Miotkowski3
R. Wiesendanger1, and A. Kozłowski2

1 Institute of Applied Physics, University of Hamburg, Germany
2 Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Kraków, Poland
3 Dept. of Physics, Purdue University, West Lafayette, USA

Keywords: SXMCD, magnetic adatoms, topological insulators

*e-mail: marcin.sikora@agh.edu.pl

The topologically protected electronic surface states were extensively studied in Bi$_2$Se$_3$ and Bi$_2$Te$_3$ by means of ARPES. Similarly to graphene, these materials were predicted to exhibit a single Dirac cone, that is protected by time reversal symmetry. This symmetry can be broken by introducing magnetic elements with a net out-of-plane magnetic moment [1,2]. Magnetic impurities not only change the electronic properties of the parent material but also introduce magnetic order to the system, for instance Bi$_2$Te$_3$ doped with Mn shows ferromagnetic order below 12 K depending on the Mn concentration [3].

In this contribution we present SXMCD studies of magnetic properties of adatoms (and dopants) on (in) single crystals of Bi$_2$Se$_3$ and Bi$_2$Te$_3$. At first, we discuss the methodology of the measurements, that allows to detect high quality spectra at low levels of doping. A detailed analysis of XAS shape suggests that adatoms usually exhibit an atomic electronic configuration equal to that of the free atom. Element specific magnetization profiles of adatoms were fitted using a thermodynamical model including Zeeman splitting and magnetic anisotropy. Depending on the adatom/substrate combination, different types of anisotropy – either uniaxial out-of-plane or basal ion-plane easy axis – is revealed. However, the magnetic moments of bulk magnetic dopants exhibit nearly isotropic magnetic properties.

Acknowledgments: European Synchrotron Radiation Facility, Grenoble, is acknowledged for providing beamtime.

References

P-33

Investigation of defect structure in undoped calcium molybdate single crystals (CaMoO$_4$) by means of X-ray diffraction methods

E. Wierzbicka*,1, A. Malinowska1, K. Wieteska2
W. Wierzchowski1, M. Lefeld-Sosnowska3
M. Świrkowicz1, T. Łukasiewicz1
K. Mazur1, and C. Paulmann4

1Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
2Institute of Atomic Energy POLATOM, 05-400 Otwock-Świerk, Poland
3Institute of Experimental Physics, University of Warsaw, ul. Hoża 69, 00-681 Warsaw, Poland
4HASYLAB at DESY, Notkestr. 85, 22-603 Hamburg, Germany

Keywords: X-ray synchrotron radiation, calcium molybdate, topography

*e-mail: edyta.wierzbicka@itme.edu.pl

The aim of the present study was the characterisation of crystal lattice defects of calcium molybdate CaMoO$_4$ crystals, which are suitable materials for many applications in acoustic-electronics, acoustic-optics, nonlinear optics, as laser hosts and scintillators, solid state lasers, different kinds of substrates and active elements of ionizing radiation detectors. For all these applications the large-sized single crystals of high structural quality are required.

The samples were investigated by means of synchrotron white beam topography, monochromatic beam topography and conventional X-ray Lang projection topography. The high resolution rocking curves were also taken using synchrotron and conventional arrangements.

The topographs of CaMoO$_4$ indicated a considerably good crystallographic perfection of the crystals. In particular they did not reveal any segregation fringes proving high homogeneity of chemical composition. Relatively high densities (< 103 cm$^{-2}$) of weak point like contrasts, which can be most probably interpreted as dislocation outcrops, were observed.

The visible imperfection of the investigated crystals was variously developed block structure. The evaluation of lattice misorientation was realised by means of superimposed projection and section white beam synchrotron radiation topographs. The evaluated misorientation between various blocks was in the range of several arc minutes.

The block structure is generally caused by cracks during the cooling process. It can be connected with thermal stresses.

Acknowledgments: The synchrotron investigations was supported by the HASYLAB project 120110423 EC.